Informatics of phenotype ontologies

Robert Hoehndorf

- anatomy ontologies:
 - species-specific: FMA, MA, ZFA, ...
 - cross-species: UBERON, GO-CC
 - with mappings to species-specific ontologies
- physiology ontologies: GO-BP, GO-MF

Structure of anatomy ontologies

- part-of relations
 - finger part-of hand
 - finger SubClassof: part-of some hand
- no (or rarely) has-part relations
 - hand has-part finger?
 - hand SubClassOf: has-part some finger
 - adactylia, accidents

Structure of physiology ontologies (GO)

- part-of and has-part
- regulates
- molecular functions as processes

Principles

Phenotype ontologies should resemble anatomy and physiology ontologies.

Usually, this means using the anatomy/physiology ontologies to build the phenotype ontologies.

Please open http://purl.obolibrary.org/obo/flopo.owl in Protege now.

• phenotype-of some ([describes the entity])

- phenotype-of some ([describes the entity])
- phenotype-of some (has-part some ([specify the anatomical part]))

- phenotype-of some ([describes the entity])
- phenotype-of some (has-part some ([specify the anatomical part]))
- phenotype-of some (has-part some (E and [whatever happened to E]))

- phenotype-of some ([describes the entity])
- phenotype-of some (has-part some ([specify the anatomical part]))
- phenotype-of some (has-part some (E and [whatever happened to E]))
- phenotype-of some (has-part some (E and has-quality some (Q)))

- phenotype-of some ([describes the entity])
- phenotype-of some (has-part some ([specify the anatomical part]))
- phenotype-of some (has-part some (E and [whatever happened to E]))
- phenotype-of some (has-part some (E and has-quality some (Q)))
- or: phenotype-of some (has-part some (E and has-quality some (Q and [refine])))

- quality and quantity
 - color vs mass
 - use OBO slims

- quality and quantity
 - color vs mass
 - use OBO slims
- trait and value
 - color vs red
 - use OBO slims

- quality and quantity
 - color vs mass
 - use OBO slims
- trait and value
 - color vs red
 - use OBO slims
- increased and decreased
 - use the OWL classes increase [object, process] quality and decreased [object, process] quality

- quality and quantity
 - color vs mass
 - use OBO slims
- trait and value
 - color vs red
 - use OBO slims
- increased and decreased
 - use the OWL classes increase [object, process] quality and decreased [object, process] quality
- normal and abnormal
 - use axioms, and the classes
 - increase-relative-to, decreased-relative-to

- quality and quantity
 - color vs mass
 - use OBO slims
- trait and value
 - color vs red
 - use OBO slims
- increased and decreased
 - use the OWL classes increase [object, process] quality and decreased [object, process] quality
- normal and abnormal
 - use axioms, and the classes
 - increase-relative-to, decreased-relative-to
- unary and n-ary $(n \ge 2)$ qualities
 - OBO slim (relational_slim)
 - n-ary qualities are really just reified relations:
 - left-side-of, anterior-to, compatible-with, response-to, ...
 - use "towards" (or any other relation) as general argument to add second filler

Patterns

- phenotype-of some ([describes the entity])
- phenotype-of some (has-part some ([specify the anatomical part]))
- phenotype-of some (has-part some (E and [whatever happened to E]))
- phenotype-of some (has-part some (E and has-quality some (Q)))
- or: phenotype-of some (has-part some (E and has-quality some (Q and [refine])))
- phenotype-of some (has-part some (E and has-quality some (Q and towards some E2)))

- in many phenotype ontologies, there is one qualifier: abnormal
- used to designate an *abnormal* phenotype
- add the qualifier to the Q (... and has-qualifier some abnormal)
- if all classes are constrained that way, nothing happens
- only useful to distinguish between normal and abnormal if both are included
 - and even there, abnormal qualifiers are not very useful!

Abnormal phenotypes

What is an "abnormal" phenotype?

Abnormal phenotypes

What is an "abnormal" phenotype?

- we don't care about philosophy here
- fundamental distinction: abnormal/comparative/divergent, and "plain" phenotypes
 - the first needs two kinds of entity, the latter only one!
- interconversion between both:
 - two normal phenosets make one abnormal (and one reference)
 - find the difference/opposite using PATO
 - reference based on anatomy/physiology
 - PATO: identify trait (red, yellow \rightarrow color)
 - PATO: identify disjointness (red disjoint from yellow)
 - PATO: identify directionality (increased/decreased relative to)

- Some classes are weird and require special treatment:
 - absent appendix, absent tail (or "aplastic")
- actually means: not having E as part!
- quiz: what is correct?
 - absent hand subclass of absent finger
 - absent finger subclass of absent hand

- Some classes are weird and require special treatment:
 - absent appendix, absent tail (or "aplastic")
- actually means: not having E as part!
- quiz: what is correct?
 - absent hand subclass of absent finger
 - absent finger subclass of absent hand
- absent hand subclass of absent finger!

Absences and other abnormalities

- Some classes are weird and require special treatment:
 - absent appendix, absent tail (or "aplastic")
 - increased rate of B cell apoptosis, increase rate of apoptosis
- quiz: what is correct?
 - increased rate of B cell apoptosis SubClassOf: increase rate of apoptosis
 - increased rate of apoptosis SubClassOf: increase rate of B cell apoptosis

Absences and other abnormalities

- Some classes are weird and require special treatment:
 - absent appendix, absent tail (or "aplastic")
 - increased rate of B cell apoptosis, increase rate of apoptosis
- quiz: what is correct?
 - increased rate of B cell apoptosis SubClassOf: increase rate of apoptosis
 - increased rate of apoptosis SubClassOf: increase rate of B cell apoptosis
- depends!
 - ALL apoptosis processes increased in rate?
 - SOME apoptosis processes increased in rate?

- taxonomic structure of ontologies is not merely a way of organizing classes
- ontology structure crucial for data analysis
 - semantic similarity
 - enrichment analysis

Gene Ontology (GO)

Example from Molecular Function ontology

CSIRC

GO Annotations

 $GOA(g_1) = \{GO:0055100, GO:0070122\}$

True Path Rule

"[...] the pathway from a child term all the way up to its top-level parent(s) must always be true".

CSIR

Semantic Similarity

$GOA(g_1) = \{GO:0055100, GO:0070122\}$

GOA(g₂) = {GO:0030332, GO:0070012}

- Annotations provide an objective representation to compare genes on functional aspects.
- Semantic similarity measure quantifies relationships between (sets of) GO terms.

$sim(g_1, g_2) = ?$

Term Specificity

Group-wise Semantic Similarity

CSIRC

Can we use this for comparing phenotypes?

We want to:

- describe phenotypes formally
 - morphology
 - function
 - $\bullet \ \Rightarrow \text{formal ontology}$

Can we use this for comparing phenotypes?

We want to:

- describe phenotypes formally
 - morphology
 - function
 - $\bullet \ \Rightarrow \text{formal ontology}$
- Integrate phenotypes within and between species
 - homologous organ structures (UBERON)
 - related/identical function (GO)
 - similar modifiers (ChEBI, CL, ...)
 - $\bullet \ \Rightarrow$ ontologies and automated reasoning

Can we use this for comparing phenotypes?

We want to:

- describe phenotypes formally
 - morphology
 - function
 - $\bullet \ \Rightarrow \ \mathsf{formal} \ \mathsf{ontology}$
- Integrate phenotypes within and between species
 - homologous organ structures (UBERON)
 - related/identical function (GO)
 - similar modifiers (ChEBI, CL, ...)
 - $\bullet \ \Rightarrow$ ontologies and automated reasoning
- find genotype-phenotype (and genotype-disease) relations
 - use phenotype similarity
 - $\bullet \ \Rightarrow \ \text{semantic similarity}$

Top-level ontology of properties based on defining class Y:

- Structural: having parts, lacking parts, being part of, not being part of
 - ∃pheneOf.(Mouse □ ∃hasPart.Tail)
- Qualitative: having qualities, lacking qualities, having quality-values, not having quality-values
 - ∃pheneOf.(Flower □ ∃hasQuality.Red)
- Functional: being capable to do X, not being capable to do X, being dysfunctional w.r.t. F
 - ∃pheneOf.(Heart □ ∃hasFunction.PB)
- Participatory: pumping blood, being a catalyst
 - ∃pheneOf.(Heart □ ∃participatesIn.PB)

Phenotype representation

Apply this method to

- Arabidopsis Information Resource
- Gramene
- WormBase
- FlyBase
- Saccharomyces Genome Database
- Mouse Genome Informatics database
- Zebrafish Model Organism Database
- OMIM
- OrphaNet

• ...

Phenotype representation

Apply this method to

- Arabidopsis Information Resource
- Gramene
- WormBase
- FlyBase
- Saccharomyces Genome Database
- Mouse Genome Informatics database
- Zebrafish Model Organism Database
- OMIM
- OrphaNet

• ...

... but all of them have different anatomy and physiology.
Can we use this framework for data integration across species?

- UBERON ontology of homologous organ structures
 - Heart (human) homologous to Heart (mouse)

- UBERON ontology of homologous organ structures
 - Heart (human) homologous to Heart (mouse)
 - Tail (mouse) homologous to ... ?

- UBERON ontology of homologous organ structures
 - Heart (human) homologous to Heart (mouse)
 - Tail (mouse) homologous to ... ?
 - Tail (mouse) SubClassOf: part-of some Trunk (mouse)
 - Trunk (mouse) homologous to Trunk (human)

What if we treat homologous organ structures as *equivalent* (for this purpose)?

Crossspecies integration

- Human absent appendix:
 ∃pheneOf.(Human □ ¬∃hasPart.HumanAppendix)
- Mouse absent appendix:
 ∃pheneOf.(Mouse □ ¬∃hasPart.MouseAppendix)
- Mouse homologous to (equivalent to) Human
- MouseAppendix homologous to (equivalent to) HumanAppendix
- $\bullet \Rightarrow \mathsf{Human} \text{ absent appendix equivalent to Mouse absent appendix}$

- Mouse absent tail: ∃pheneOf.(Mouse □ ¬∃hasPart.MouseTail)
- MouseTail homologous to (equivalent to) ???

- Mouse absent tail: ∃pheneOf.(Mouse □ ¬∃hasPart.MouseTail)
- MouseTail homologous to (equivalent to) ???
- Infer using mouse anatomy

Starting with a pair of Entity and Quality, generate the following classes:

- $EPhenotype \equiv \exists pheneOf.(\exists partOf.E \sqcap \exists hasQuality.\top)$
- 'E Q' $\equiv \exists pheneOf.(E \sqcap \exists hasQuality.Q)$
 - ${\ensuremath{\, \circ }}$ or any of the other structural forms, depending on Q
- assert equivalence between *E*s in different species (based on homology)
- then, include anatomy ontologies

Starting with a pair of Entity and Quality, generate the following classes:

- $EPhenotype \equiv \exists pheneOf.(\exists partOf.E \sqcap \exists hasQuality.\top)$
- 'E Q' $\equiv \exists pheneOf.(E \sqcap \exists hasQuality.Q)$
 - ${\ensuremath{\, \circ }}$ or any of the other structural forms, depending on Q
- assert equivalence between *E*s in different species (based on homology)
- then, include anatomy ontologies
- AbsentTail (mouse) will become a subclass of TrunkPhenotype (mouse, human)

Phenotype representation

- Arabidopsis Information Resource
- Gramene
- WormBase
- FlyBase
- Saccharomyces Genome Database
- Mouse Genome Informatics database
- Zebrafish Model Organism Database
- OMIM
- OrphaNet

Phenotype representation

- Arabidopsis Information Resource
- Gramene
- WormBase
- FlyBase
- Saccharomyces Genome Database
- Mouse Genome Informatics database
- Zebrafish Model Organism Database
- OMIM
- OrphaNet
- more than 250,000 formal phenotype descriptions
- > 2,000,000 axioms

• Classify the resulting ontology using a OWL (EL) reasoner

- Classify the resulting ontology using a OWL (EL) reasoner
- 70% of classes are unsatisfiable... why?

- Classify the resulting ontology using a OWL (EL) reasoner
- 70% of classes are unsatisfiable... why?
- it's not so easy to combine different anatomy ontologies; different conceptualizations!
 - Anus (human) is an orifice which is a kind of *immaterial anatomical entity*; Anus (mouse) is a *material entity*
 - *immaterial anatomical entity* and *material anatomical entity* are disjoint in human anatomy
- a (lossy) solution: get rid of all the disjointness axioms

We can now

- formally describe phenotypes
- integrate phenotype with anatomy and physiology ontologies
- integrate phenotypes across species (with some losses)
- integrate disease and model organism phenotypes

We can now compare *human* phenotypes (in diseases, drug effects) with *animal model* phenotypes!

Integration

- Overriding aorta (HP:0002623)
- Ventricular septal defect (HP:0001629)
- Pulmonic stenosis (HP:0001642)
- Right ventricular hypertrophy (HP:0001667)

phenotype of mutations subclass of disease phenotype allows inference of gene-disease association if

- disease phenotypes *sufficient* for having the disease
- mutation phenotypes *necessary* for having a specific genotype

Affected Systems	Genotypes:	hm1	hm2
cardiovascular system	•		\checkmark
pulmonary trunk hypoplasia			\checkmark
abnormal cardiovascular development			\checkmark
abnormal heart looping			\checkmark
abnormal bulbus cordis morphology			\checkmark
abnormal outflow tract development			\checkmark
abnormal heart morphology			\checkmark
overriding aorta			\checkmark
ventricular septal defect			\checkmark
heart right ventricle hypertrophy			\checkmark
abnormal semilunar valve morphology			\checkmark
aortic valve stenosis			\checkmark
pulmonary valve stenosis			\checkmark
abnormal heart right ventricle outflow tract m	orphology		\checkmark
dilated heart ventricle			\checkmark
thin ventricular wall			\checkmark

Analyzing phenotypes

Integration of phenotype ontologies enables identification of disease phenotypes in mice.

Affected Systems Genotyp	es:	hm1	hm2
cardiovascular system	▼		\checkmark
pulmonary trunk hypoplasia			\checkmark
abnormal cardiovascular development			\checkmark
abnormal heart looping			\checkmark
abnormal bulbus cordis morphology			\checkmark
abnormal outflow tract development			\checkmark
abnormal heart morphology			\checkmark
overriding aorta			\checkmark
ventricular septal defect			\checkmark
heart right ventricle hypertrophy			\checkmark
abnormal semilunar valve morphology			\checkmark
aortic valve stenosis			\checkmark
pulmonary valve stenosis			\checkmark
abnormal heart right ventricle outflow tract morpholo	gy		\checkmark
dilated heart ventricle			\checkmark
thin ventricular wall			\checkmark

- Overriding aorta (MP:0000273)
- Ventricular septal defect (MP:0010402)
- Pulmonary valve stenosis (MP:0006128)
- Heart right ventricle hypertrophy (MP:0000276)
- ...

Analyzing phenotypes 4,000 genetic diseases in OMIM, 6,000 in OrphaNet, have an unknown molecular basis

OMIM[®]

Online Mendelian Inheritance in Man®

An Online Catalog of Human Genes and Genetic Disorders

Number of Entries:					
Prefix	Autosomal	X Linked	Y Linked	Mitochondrial	Totals
* Gene description	12,750	627	48	35	13,460
+ Gene and phenotype, combined	250	14	0	2	266
# Phenotype description, molecular basis known	2,836	240	4	28	3,108
% Phenotype description or locus, molecular basis unknown	1,628	135	5	0	1,768
Other, mainly phenotypes with suspected mendelian basis	1,819	130	2	0	1,951
Totals	19,283	1,146	59	65	20,553

orphanet

Analyzing phenotypes

- $\bullet \, \Rightarrow$ phenotypic similarity combines similarity between anatomy, function, and quality
 - ... because this is how we built our phenotype ontology!
 - anatomy: front limb hind limb vs. front limb eye
 - function: detection of salty taste detection of sweet taste vs. detection of salty taste apoptosis
 - quality: red orange vs. red green vs. red round

Information content of phenotype:

$$IC(x) = -\log(p(x))$$

Phenotype similarity:

$$sim(P,D) = \frac{\sum_{x \in CI(P) \cap CI(D)} IC(x)}{\sum_{y \in CI(P) \cup CI(D)} IC(y)}$$

Information content of phenotype:

$$IC(x) = -\log(p(x))$$

Phenotype similarity:

$$sim(P, D) = \frac{\sum_{x \in CI(P) \cap CI(D)} IC(x)}{\sum_{y \in CI(P) \cup CI(D)} IC(y)}$$

 \Rightarrow systematic, pairwise comparison of disease and model organism phenotypes

dísease id	rank 1	rank 2	rank 3	
604290	rd14	nmf242	nmf127	
100050	frg	Spry4 <tm1ayos></tm1ayos>	Ryk <tm1stac></tm1stac>	
100070	Atp7a <mo-to></mo-to>	Slc2a10 <s150f></s150f>	Pdgfrb <tm7sor></tm7sor>	

dísease id	rank 1	rank 2	rank 3	
604290	rd14	nmf242	nmf127	
100050	frg	Spry4 <tm1ayos></tm1ayos>	Ryk <tm1stac></tm1stac>	
100070	Atp7a <mo-to></mo-to>	Slc2a10 <s150f></s150f>	Pdgfrb <tm7sor></tm7sor>	

How well does this approach recover known disease genes?

Analyzing phenotypes

• AUC (OMIM): 0.84

• AUC (MGI): 0.91

- Adam19 and Fgf15 in mice and (mammalian homologs of) Cx36.7 and Nkx2.5 in zebrafish are candidates for Tetralogy of Fallot
- Gene disease associations for orphan diseases
 - *Slc34a1* (MGI:1345284) and Fanconi renotubular syndrome 1 (OMIM:134600)
 - *Hip1* and Bassoe syndrome
- Disease pathways
 - Cytokine-cytokine receptor interaction pathway (ko04060) is significantly correlated with Tetralogy of Fallot ($p = 5 \cdot 10^{-7}$, Wilcoxon signed-rank test)

- skeletal:
 - kyphosis, hypertensible joints, cubitus valgus
- muscular:
 - hypotonia, muscle hypotrophy, amyotrophy
- behavior:
 - abnormal gait, amimia
- visual:
 - cataract, strabismus
- reproductive:
 - hypogonadism, hypogenitalism, abnormal ovaries, hypoplastic testis, reduced fertility

Bassoe Syndrome http://phenomebrowser.net

Related OrphaNet phenotypes for Hip1

Rank	Name (ID)	Similarity		
1	Hypomyelination - hypogonadotropic hypogonadism - hypodontia (ORPHANET:88637)	0.3064	Show	explore
2	46.XX testicular disorder of sex development (ORPHANET:393)	0.3027	Show	explore
3	Intellectual deficit, X-linked - hypogonadism - ichthyosis - obesity - short stature (ORPHANET:85331)	0.2999	Show	explore
4	46,XY complete gonadal dysgenesis (ORPHANET:242)	0.2891	Show	explore
5	Bilateral anorchia (ORPHANET:983)	0.2801	Show	explore
6	Hypergonadotropic hypogonadism - cataract syndrome (ORPHANET:2410)	0.2792	Show	explore
7	Hypogonadotropic hypogonadism - frontoparietal alopecia (ORPHANET:2230)	0.2745	Show	explore
8	Camurati-Engelmann disease (ORPHANET:1328)	0.2722	Show	explore
9	Neurosensory deafness - pituitary dwarfism (ORPHANET:3228)	0.2706	Show	explore
10	Hydrocephalus - obesity - hypogonadism (ORPHANET:2183)	0.2689	Show	explore
11	Alopecia - intellectual deficit - hypergonadotropic hypogonadism (ORPHANET:1014)	0.268	Show	explore
12	46,XY disorder of sex development due to 5-alpha-reductase 2 deficiency (ORPHANET:753)	0.2654	Show	explore
13	46,XY disorder of sex development due to 17-beta-hydroxysteroid dehydrogenase 3 deficiency (ORPHANET:752)	0.2623	Show	explore
14	Androgen insensitivity syndrome (ORPHANET:754)	0.2555	Show	explore
15	Woodhouse-Sakati syndrome (ORPHANET:3464)	0.253	Show	explore
16	XK aprosencephaly (ORPHANET:3469)	0.2529	Show	explore
17	Intellectual deficit, X-linked, Miles-Carpenter type (ORPHANET:85283)	0.2527	Show	explore

Bassoe Syndrome HIP1 knockout mice

Allele Symbol	Ch	Synonyms	ms Category Observed Phenotypes in Mouse		Allelic Composition		
Gene; Allele Name				Affected Anatomical Systems	Similar Human Diseases	(Genetic Background)	
Hip1tm1Hav huntingtin interacting protein 1; targeted mutation 1, Michael Hayden	5	HIP1-	Targeted (Reporter)	mortality/aging, behavior, growth/size, skeleton, muscle		Hip1tmlHay/Hip1tmlHay (involves: 129S1/Sv * 129X1/Sv] * C57BL/6)	
Hip1tmlTsr huntingtin interacting protein 1; targeted mutation 1, Theoriera S Prose	5	HIP1-	Targeted (knock-out)	mortality/aging, reproductive, endocrine/exocrine, hematopoietic, cellular		Hip1tmlTsr/Hip1tmlTsr (involves: 129X1/SvJ * C578L/6)	
				reproductive, endocrine/exocrine		Hip1tm1Tsr/Hip1+ (involves: 129X1/SvJ * C57BL/6)	
				growth/size, skeleton		Hip1im1Tsr/Hip1im1Tsr Hip1rim1Tsr/Hip1rim1Tsr (involves: 129X1/SvJ * C578L/6)	
Hip1tm2.1Tgr huntingtin interacting protein 1; targeted mutation 2.1, Theodora S Ross	5	Hip1delta3- 5	Targeted (knock-out)	reproductive, skeleton		Hip1tm2.1Tsr/Hip1tm2.1Tsr (involves: 129X1/SvJ)	
Hip1tm2Tsr huntingtin interacting protein 1; targeted mutation 2, Theodora S Ross	5	Hip1 ^{loxp}	Targeted (Floxed/Frt)	none		Hip1tm2Tsr/Hip1tm2Tsr (Involves: 129X1/SvJ * C578L/6)	
HID1tm3Tsr huntingtin interacting protein 1; targeted mutation 3, Theodora S Ross	5	Hip1null	Targeted (knock-out)	mortality/aging, growth/size, hematopoletic, reproductive, skeleton, vision/eye, endocrine/exocrine		Hip1m3Tsr/Hip1m3Tsr (involves: 129X1/SvJ * C578L/6)	
Hip1tm4Tsr huntingtin interacting protein 1; targeted mutation 4, Theodora S Ross	5	Hip1LSL- H/P	Targeted (Floxed/Frt)	vision/eye		Hip1m4Tsr/Hip1+ (involves: 129X1/SvJ * C578L/6)	
				mortality/aging, hematopoletic, tumorigenesis, immune, homeostasis		Hip1tm4Tir/Hip1+ Tg(Mx1-cre)1Cgn/0 (Involves: 129X1/Sv] * C57BL/6 * CBA) conditionally targeted	
				mortality/aging, hematopoletic, tumorigenesis, liver/billary, respiratory, immune		<u>Hip1tm4Tsr/Hip1+</u> <u>Runx1tm3Dom/Runx1+</u> <u>Ta(Mx1-cre)1Can</u> /0 (Involves: 129X1/Sv3 * C578L/6 *	

Bassoe Syndrome:

- kyphosis, hypertensible joints, cubitus valgus
- amyotrophy, hypotonia, muscle hypotrophy
- abnormal gait, amimia
- cataract, strabismus
- testicular atrophy, hypogonadism, hypogenitalism, abnormal ovaries, reduced fertility

Mouse phenotypes:

- kyphosis, abnormal spine curvature, lordosis
- abnormal muscle morphology
- abnormal gait, hypoactivity, tremors
- nuclear cataracts, microphthalmia
- testicular atrophy, male infertility

Bassoe Syndrome:

- kyphosis, hypertensible joints, cubitus valgus
- amyotrophy, hypotonia, muscle hypotrophy
- abnormal gait, amimia
- cataract, strabismus
- testicular atrophy, hypogonadism, hypogenitalism, abnormal ovaries, reduced fertility

Mouse phenotypes:

- kyphosis, abnormal spine curvature, lordosis
- abnormal muscle morphology, muscle hypotrophy, muscle wasting
- abnormal gait, hypoactivity, tremors, failure to thrive, ataxia
- nuclear cataracts, microphthalmia
- testicular atrophy, male infertility, ovarian abnormalities, testicular degeneration, increased apoptosis of postmeiotic spermatids, oligospermia

Computational analysis of mouse phenotypes provides an indication that HIP1 may be involved in Bassoe syndrome.
Hypothesis

A similarity between drug D's effects and phenotypes resulting from *knock-out/knock-down* of a gene/protein in an animal model may indicate that D *inhibits* the gene/protein (or its human ortholog).

Hypothesis

A similarity between drug D's effects and phenotypes resulting from *knock-out/knock-down* of a gene/protein in an animal model may indicate that D *inhibits* the gene/protein (or its human ortholog).

Evaluation using experimentally verified drug targets:

- DrugBank
- STITCH (human and mouse)

Drug target Similarity between drug effects and mouse model phenotypes reveals drug targets.

- AUC: 0.76 (STITCH human)
- AUC: 0.80 (STITCH mouse)
- AUC: 0.72 (DrugBank)